Steel Shield Technologies

Has Redefined Lubrication.

Webster’s Dictionary defines lubricants as substances capable of reducing friction, heat and wear when introduced between two solid surfaces. From the initial development and use of lubricants, chemical technology has constantly advanced to make them more effective. Friction changes in refinement processes to the development of additives, the concentration has always been to increase the ability of the lubricant to reduce friction, heat and wear. Steel Shield Technologies has changed the approach to lubrication and, it essence, given new definition to the term. First, there are a few points to consider.

Metal Against Metal

The structure of all metals creates a surface characterized by a series of sharp peaks and valleys, some microscopic and some larger. As two metal surfaces contact each other and move in opposite directions, friction is caused, producing heat and metal deterioration. This friction causing physical dynamic is heightened by the electromagnetic field created on the surfaces of each metal. The sharp peaks, known as asperities, and valleys, referred to as micro-pores and fissures, have opposite electromagnets charged charges. Illustration A shows a new metal with positive charged asperities and negatively charged micro-pores and fissures. The constant interaction of these opposite charged features works to weaken the structure of the metal, causing eventual deterioration of the surface of the part.

Normal Lubricants Help

All lubricants help to slow this process to different degrees. Illustration B shows the results after a period of time use of a typical oil lubricant. The constant friction and electro-magnetic interaction has caused the weakened metal to break off or chip away creating metallic debris in the lubricant leading to abrasive wear from wear metal particles. This fact is evidenced in the need to change the engine oil of automobiles frequently as the lubricant breaks down due to the heat and metallic debris.

Steel Shield Technologies has redefined lubrication by breaking away from the standard approach to making the lubricant more effective through adjusting the refinement process or through the use of additives. Instead, Steel Shield Technologies approaches lubrication by improving the surface characteristics of the metal through the process of Advanced Boundary Film formation. The technological breakthrough is accomplished by addressing the naturally formed asperities, micro-pores and fissures and the electromagnetic charges they create. Steel Shield products consist of an advanced combination of halogen which react under thermal (heated) conditions to form electro-negative surface attaching compounds. They seek out and affix themselves to the lower surface areas, filling the micro-pores and fissures. As this process is working, the thermal conditions are effecting the asperities. Instead of breaking off because of a weakened metal state, the asperities gradually roll off or fray. So while the micro-pores and fissures are filling up, the asperities are flattening for an end result of a metal surface that is greatly improved. Created in this process is a total positive state of polarity. When the metal surface polarity becomes uniform in charge, there is a reduction in friction due to the Faraday reaction of like-charges. The electro-chemical process continues at the molecular level to form an Advanced Boundary Film on the surface of the metal. Illustration C shows the end result of the production of the Advanced Boundary Film and the resulting uniform positive polarity.

Another aspect of this advanced technology is the organo-metallic substitution which is the chemical process designed to inhibit halide formation. Here, the halogens used to form the surface attaching compounds react with reagents having similar properties to the iron atom. The halogens, therefore, do not scavenge the target metal surface to form iron which will react, forming halides and creating a chemically corrosive wear problem. Instead, an organo-metallic complex is formed as the basis of the Advanced Boundary Film.

Industrial Success Comes To The Consumer

Steel Shield Technologies is now bringing this breakthrough technology to the consumer after great success on the industrial level. The end result is a stronger metal that maintains its original specifications and performance level. An example of the reduced operating temperatures is found in the independent tests that show a drop of an average of 30 Fahrenheit degrees in treated automobile engines.